Four-dimensional address topology for circuits with stacked multilayer crossbar arrays.

نویسندگان

  • Dmitri B Strukov
  • R Stanley Williams
چکیده

We present a topological framework that provides a simple yet powerful electronic circuit architecture for constructing and using multilayer crossbar arrays, allowing a significantly increased integration density of memristive crosspoint devices beyond the scaling limits of lateral feature sizes. The truly remarkable feature of such circuits, which is an extension of the CMOL (Cmos + MOLecular-scale devices) concept for an area-like interface to a three-dimensional system, is that a large-feature-size complimentary metal-oxide-semiconductor (CMOS) substrate can provide high-density interconnects to multiple crossbar layers through a single set of vertical vias. The physical locations of the memristive devices are mapped to a four-dimensional logical address space such that unique access from the CMOS substrate is provided to every device in a stacked array of crossbars. This hybrid architecture is compatible with digital memories, field-programmable gate arrays, and biologically inspired adaptive networks and with state-of-the-art integrated circuit foundries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of Multilayer Perceptron Network with Highly Uniform Passive Memristive Crossbar Circuits

The progress in the field of neural computation hinges on the use of hardware more efficient than the conventional microprocessors. Recent works have shown that mixed-signal integrated memristive circuits, especially their passive ('0T1R') variety, may increase the neuromorphic network performance dramatically, leaving far behind their digital counterparts. The major obstacle, however, is relat...

متن کامل

25-1: Pattern Classification with Memristive Crossbar Circuits

Neuromorphic pattern classifiers were implemented, for the first time, using transistor-free integrated crossbar circuits with bilayer metal-oxide memristors. 10×6and 10×8-crosspoint neuromorphic networks were trained in-situ using a Manhattan-Rule algorithm to separate a set of 3×3 binary images: into 3 classes using the batch-mode training, and into 4 classes using the stochastic-mode trainin...

متن کامل

Nanoscale molecular-switch crossbar circuits

Molecular electronics offer an alternative pathway to construct nanoscale circuits in which the critical dimension is naturally associated with molecular sizes. We describe the fabrication and testing of nanoscale molecular-electronic circuits that comprise a molecular monolayer of [2]rotaxanes sandwiched between metal nanowires to form an 8 × 8 crossbar within a 1 μm2 area. The resistance at e...

متن کامل

Reliable Circuits Design with Nanowire Arrays

The emergence of different fabrication techniques of silicon nanowires (SiNWs) raises the question of finding a suitable architectural organization of circuits based on them. Despite the possibility of building conventional CMOS circuits with SiNWs, the ability to arrange them into regular arrays, called crossbars, offers the opportunity to achieve higher integration densities. In such arrays, ...

متن کامل

Nanowire crossbar arrays as address decoders for integrated nanosystems.

The development of strategies for addressing arrays of nanoscale devices is central to the implementation of integrated nanosystems such as biological sensor arrays and nanocomputers. We report a general approach for addressing based on molecular-level modification of crossed semiconductor nanowire field-effect transistor (cNW-FET) arrays, where selective chemical modification of cross points i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 48  شماره 

صفحات  -

تاریخ انتشار 2009